
IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF NEBRASKA

DAVID PITLOR, Case No. 8:23-cv-00407

Plaintiff,

 EXHIBIT ‘S’:

vs. DECLARATION OF DAVID PITLOR
 (28 U.S.C. § 1746)
TD AMERITRADE, INC. &
SCHWAB AND CO., INC.,
 Defendants.

I, David Pitlor, declare the following:

1. I make this declaration based on my personal knowledge. The statements below summarize

device logs, event logs, stack traces, and screenshots I captured in 2018 (collectively, the

“materials.”)

2. The Barclays 2023 FINRA disciplinary action (AWC. No. 2019061076001) was issued

two weeks after the arbitration ended in June 2023. The recordkeeping discrepancies

described therein were attributed to “coding errors,” which led to my revisiting the logs from

the 2018 crashes of the Schwab and TD Ameritrade apps. After considerable time

deciphering the logs, I was able to make significant breakthroughs in my understanding, and

particularly regarding the Defendants’ collusion.

3. I am a licensed professional mechanical engineer. My experience includes the design,

operation, and troubleshooting of mechanical, electrical, and digital controls systems.

4. I collected more than 400 screenshots of System logs, Event logs, Stack Traces, and other

crash metadata pertaining to the crashes of the Schwab and TD app crashes. This exhibit was

 EXHIBIT 'S' 1

prepared from those materials (and a few other screenshots that document other anomalies

pertaining to the Schwab app), without alteration aside from cropping and resizing images.

The original files have been or will be made available to Defendant for inspection and

copying, including:

a. Screenshots Nos. 1–278 correspond to Schwab mobile app crashes between

February 28 and April 4, 2018.

b. Screenshots Nos. 279–428: The TD Ameritrade app crashed on April 26, May 23,

May 25, and June 1, 2018. My TD account was supposedly closed in September

2017, but I was able to log in to the “ThinkorSwim” platform up to 2020.

5. Representative examples (¶A-¶R) were selected for this Exhibit that most efficiently

demonstrate that my device was compromised by a sophisticated exploit chain that targeted

my Schwab account, and moreover that TD Ameritrade was integrally involved in the

scheme’s execution. I am prepared to present a more detailed analysis of the evidence

presented herein and other examples of exploit activities contained within the voluminous

body of evidence pertaining to Schwab and TD’s “coding errors.”

6. A secret user profile was set up on my device that was inaccessible to me (via Samsung

Knox). Malicious overlays intruded into the Home (User 0) domain to manipulate onscreen

displays, inject and capture inputs, and maliciously interfere with my Schwab app. In

addition to monitoring device activity, the exploit enabled redirection of trade orders,

selectively, as they were submitted for execution, and thereby enabled transactions to

“disappear” from the record. TD Ameritrade’s activities concerning spoofed surfaces and

Samsung Knox affirms their crucial role in this scheme.

7. Throughout the ensuing analysis, several CVE (Common Vulnerabilities and Exposures)

are referenced. While these CVEs describe vulnerabilities that may have been exploited

here, an app crash can facilitate similar results by forcing the system to

 EXHIBIT 'S' 2

pitlo
Snapshot

temporarily, to a weakened security state, creating a window of opportunity for attackers to

escalate privileges and install/operate/teardown the exploit framework. Accordingly, the

CVE citations are provided for context, not attribution, to demonstrate how the systems

were vulnerable.

8. A timeline is presented on the next page to provide context with respect to the relevant

events that coincided with the 2018 app crashes, followed by the Table of Contents.

 EXHIBIT 'S' 3

TIMELINE

2018 Schwab and TD Ameritrade Application Crashes

 Feb. 21: Schwab Account Opened
 Feb. 27: first trades occurred:
 Feb. 28: first Schwab app crashes

o account restrictions imposed,
o $9,999,999.00 added to “Cash on Hold”

 March 1: Schwab app crash

o TD involvement first indicated w/spoofed surfaces
 March 3: Schwab app crash
 March 6: Schwab app crash

o $9,999,999.00 removed from “Cash on Hold”
 March 21 Schwab app crash:

o inaccurately documented positions
 March 23 Schwab app crash (most profitable day of trading):

o inaccurately documented positions
 March 26–28:

o Plaintiff notifies Schwab re: accounting issues and suspected
missing funds

 March 30:
o Schwab Futures Account “closed” without prior notice,

removed from account historical data.

 April 2
o Schwab informed Plaintiff that his Brokerage

Account would be closed May (and confirmed Futures
account closure)

 April 3: Schwab app crash
 April 4: Plaintiff reported to the Fraudfinder and Bridger

 “Hotlists” on April 4th.
 April 24: First TD app Crash
 April 26: Schwab account inaccessible.

 May 2: Scheduled closure date for Schwab account
 May 23: TD app crash
 May 25: TD app crash

 June 1: TD app crash
 June 18: Another entry made to supplement or modify the

 Fraudfinder and Bridger Hotlists

 EXHIBIT 'S' 4

A. Stack Traces show “coding errors” impacted Schwab account data ... 6

B. Schwab’s Equity Awards "coding errors" for login info (but Plaintiff was never enrolled) 7

C. Surface Null Sessions and spoofed surfaces compromised critical system components 8

D. Spoofed Surface "Jnput Method" created instead of "Input Method". 9

E. “Image” parsed with over 5412 EXIF components (typical max is a few hundred) 9

F. JavaBinder Warnings Indicate Binder UAF exploit ... 10

G. Network side-channel activated, Exif parsing exceptions, and several additional

 warnings during media handling--a few seconds before a Schwab app crash 11

H. Exploit-related activities--some involving TD Ameritrade--precede Schwab crash 12

 1. “Passcode disabled due to new User ID” supports malicious “context switches”. 12

 2. "QhoneMainActi" spoofs the TD app's "PhoneMainActivity" after Knox User Change........ 12

 3. “TearchSymbo”, a hidden spoofed overlay of TD's "SearchSymbolActivity". 13

 4. "Surface Null Session" involving “Jnput Method” & “TearchSymbo” precedes a

 crash of the Schwab app crash. ... 14

I. TD Ameritrade’s “PhoneMainActivity” associates with Knox Secure Folder Task

 and a Pending Intent .. 15

J. “Illegal State Exceptions” for “PhoneMainActivity” & crashes of the TD app 16

K. On March 21, a “Surface Null Session” impacts the Schwab app; the same day as

 recordkeeping errors that match FINRA AWC No. 2019061076001 (Barclays)………..17

L. A stub WebView package in the Schwab app provided a covert channel for surface

 overlay attacks, input intercepts/injection, and interference with onscreen rendering. 18

M. A “maintenance” instance of the TD’s app was observed running alongside the standard

 instance of the TD app while Schwab app crashes occurred ... 19

N. TD app crash involving “Phone Order Editor Activity”, “Order Editor Parameter

 Holders” and “Order Entry Fragments.” ... 20

O. JIT inline-cache deoptimization within Zygote facilitated runtime manipulation. 21

P. Dynamic Heap Allocation (DHA) "herding" suppressed security services & reporting 22

Q. Schwab app error messages indicate session tampering and cross-context interference 23

R. Other indications that logic and data structures were “imperfectly” rewired by the exploit. . 24

 1. “Historical Data is missing from one of more of your accounts,” indicates that
 transaction histories and balance data had been altered or lost. 24
 2. “Personal Value” (Total Account Value) and “Day Change” figures (gain/loss)
 displayed as “$0.00” and “N/A”, respectively. .. 24
 3. Contradictory info displayed regarding when last transaction occurred supports the
 other evidence of erroneous dates and manipulated timekeeping 25

 EXHIBIT 'S' 5

pitlo
Text Box
TABLE OF CONTENTS

A. The Stack traces show that “coding errors” impacted Schwab account data, including

“AccountSummaryActivity” and “AccountDetailsTabActivity.”

▪ The exceptions involved “obfuscated” account data structures like

com.schwab.mobile.f.a.g and com.schwab.mobile.f.a.z.v()2. As such, inside access to

Schwab’s back-end systems and source code was necessary to “weaponize” the crash

events.

❖ NullPointerException can compromise an application’s stability and data integrity in a

variety of ways, including interruption of workflows mid-operation, resource leaks, and

state desynchronization.

2 ProGuard is an Android built tool used to optimize and obfuscate app code—renaming to short,

meaningless symbols (e.g., com.schwab.mobile.f.a.z.v()). A mapping file is required to convert those

symbols into the names of the actual data. In short, this renders implausible any suggestion that Plaintiff,

or anybody else without access to Schwab’s source code and backend systems, could have been

responsible for this exploit.

 EXHIBIT 'S' 6

pitlo
Text Box
No. 9 (February 28)

pitlo
Text Box
No. 180 (March 1)

pitlo
Arrow

pitlo
Arrow

B. On March 6, 2018, around the time $9,999,999.00 was removed from the Cash on Hold

balance,3 Null Pointer Exceptions indicate “coding errors” pertaining to login activities

for Schwab’s Equity Awards (which Plaintiff was never enrolled in).

▪ Schwab Equity Awards is Schwab’s platform for

employees and other plan participants to manage

company equity compensation—e.g., viewing grants

and vesting schedules, accepting awards, exercising

stock options, selling shares, and handling tax

withholding/reporting. It’s used by companies that hire

Schwab as their equity plan administrator. Schwab

Equity Awards typically links to a Schwab brokerage

account to settle exercises or sales.

▪ Plaintiff was not enrolled in Schwab Equity Awards,

nor was there any legitimate basis for any such

activity.

3 There is substantial evidence that an errant transfer somehow landed in Plaintiff’s account on

February 28, 2018. Whether it was for $9,999,999.00 or a different amount, the Defendants were

keen to remove the funds and eliminate the evidence that any such event occurred. The

accounting “sleight of hand” was achieved via a clandestine linkage between Schwab and TD’s

systems – using Plaintiff’s Android smartphone as the intermediary (and utilizing Plaintiff’s

“closed” TD Ameritrade account as a key facilitator in making funds and transaction data

“disappear” from Schwab’s domain). After the Cash on Hold sum was removed, the contorted

account structures continued to be leveraged thereafter to steal money and eliminate the

evidence. While the exploit succeeded in some respects (indeed the errors in the official records

are rather subtle, making proof of theft virtually impossible without the benefit of the live

account balances captured by Plaintiff’s screenshots), apparently the app crashes and other errors

on the device were significantly louder and messier than the attackers had planned. The

noticeable signs of tampering of the Schwab app seem to be unintentional consequences of the

exploit’s imperfect execution (e.g. “Historical data is missing from some of your accounts”, and

several other anomalies). It seems the attackers may have been unaware that their “stealthy”

exploit was actually rather noisy.

 EXHIBIT 'S' 7

pitlo
Text Box
No. 197 (March 6)

pitlo
Arrow

pitlo
Arrow

C. Spoofed surfaces and Surface Null Sessions

compromised critical system components including

the SystemUI4, Keyboard, and the Schwab app itself.

▪ The presence of Surface Null Sessions impacting

core system processes indicates that privileged

Binder5 connections were rendered vulnerable to

compromise.

▪ On February 28th, the removal of the spoofed

surface, “Secents Acti” interfered with the actual

“RecentsActivity” and triggerred a Surface Null

Session that destabilized the actual systemUI

(Process 2247)

❖ A Surface Null Session occurs when the

window manager attempts to operate on a surface

whose session reference is null—commonly because

the surface was just torn down, not yet created, its

owner process died, or it belongs to another user

context (e.g. Knox).

❖ Each Surface Null Session was associated

with the teardown of a spoofed surface that

overlayed a legitimate component.

4 CVE-2018-9524 (Insufficient SystemUI overlay protections): This vulnerability permitted a local

app to manipulate overlay windows (special UI layers drawn on top of other content) without proper

permission checks or bounds validation. This enabled spoofed inputs, hijacking touches/keystrokes, and

tricking SystemUI into dispatching privileged actions on the attacker’s behalf. Critically, this also

facilitated spoofed surfaces (crafted objects masquerading as legitimate display layers) to move across

context boundaries (e.g., from Knox into User 0)

5 Binders are Android's inter-prcess communication mechanism that all apps use to communicate with

other processes.

 EXHIBIT 'S' 8

pitlo
Text Box
No. 75 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
See ¶K

pitlo
Arrow

pitlo
Arrow

D. Immediately after the Surface Null Session on Feb. 28, the system attempts to relayout

“Input Method” but the spoofed surface “Jnput Method” was created.

(Not shown: a few milliseconds before Jnput Method

was created, secure settings were altered

programmatically amidst a flurry of messaging activity–

too quick to be user interaction – to alter Input Method

settings and Keyboard Shortcuts, apparently leveraging

CVE-2021-253936 or a similar vulnerability that enabled

arbitrary manipulation of Secure Settings.)

E. “Image” parsed with abnormally large number of EXIF components

After “Jnput Method” was created, an “image” file

with over 5,000+ EXIF components was parsed.

Typically, an image file contains dozens to, at most,

several hundred components. The context in which this

log appears (immediately after Null Session and spoofed

surface created), indicates rearming freed Binder

references with an attacker controlled object table.

6 CVE-2021-25393 is an improper intent sanitization issue in Samsung’s SecSettings that permitting

arbitrary file read/write with the system UID. This primitive manipulate the settings that govern

InputMethod registration. Exploitation of this type of vulnerability was combined with a Binder UAF

(CVE-2019-2215 or similar) to reach into the SystemUI and hijack privileged binder paths.

 EXHIBIT 'S' 9

pitlo
Text Box
No. 76 (System log)

pitlo
Text Box
No. 77 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

❖ Despite the warnings, parsing was not halted and

proceeded to bindView. This pattern is consistent with

image-parser weaknesses described in CVE-2019-

19877 whereby malformed images were able to drive

abnormal allocations.

F. JavaBinder Warnings Indicate Binder UAF Exploit

JavaBinder warnings are logged for the SystemUI

process (PID 2247) approximately three minutes after the

SystemUI encountered a Surface Null Session (see above

¶C). This sequence is consistent with the exploitation of a

Binder Use-After-Free (UAF) vulnerability.8

A Binder UAF can be exploited to marshal a malicious

parcel (a serialized data container used in Binder transactions

for passing parameters across processes). In this instance, a

malicious “image” file was inserted into a privileged

rendering path (Samsing CMH) while a screenshot was being

processed (“piggybacking” on legitimate activity).

The JavaBinder warnings confirm that, after the freed binder introduced the malicious parcel,

the dangling binders were cleaned up. Just a few hundred milliseconds later, an abnormal

“image” file was parsed (see next page, ¶G), ultimately leading to a crash of the Schwab app.

7 The decode-then-bindView sequence despite parser irregularities aligns with CVE-2019-1987’s description of out-

of-bounds writes in Skia’s image sampling when parsing malformed images. This is cited here to show the type of

weakness implicated.

8 Binder User-After-Free is a of memory corruption issue in Android's Binder IPC (Inter-process communication)

framework where a Binder object is prematurely freed but subsequently referenced, allowing attackers to manipulate

the freed memory slot.

 EXHIBIT 'S' 10

pitlo
Text Box
No. 78 (System log)

pitlo
Text Box
No. 91 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
storage permisssion with an extra 's' - uncertain relevance

pitlo
Arrow

 EXHIBIT 'S' 11

pitlo
Text Box
No. 87

pitlo
Text Box
No. 89

pitlo
Text Box
No. 93

pitlo
Text Box
No. 94

pitlo
Text Box
No. 95

pitlo
Text Box
No. 38

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
The warning “Active mobile network without subscriber” appears to reflect a networking side-channel being activated just seconds before the Schwab app crash on February 28 – coinciding with a maliciously crafted “image” file being parsed

pitlo
Text Box
G. Network side-channel activated, Exif Parsing Exceptions, and several additional
 warnings--a few seconds before a Schwab app crash, as screenshot is processed by
 Samsung CMH (confirmed by preceding screenshots- not shown here).

pitlo
Text Box
Binder warning (¶F) logged at 23:37:32.678

pitlo
Snapshot

H. The next morning, on March 1, a series of exploit-related activities precede the crash of

the Schwab app, some of which involve TD Ameritrade.

1. First, at 7:04 am, the Schwab app alerted:

“Passcode disabled due to new User ID” (just

after another crash event), supporting the notion

of “context switches” involving secret users.

2. Then, at 8:44 am, the relayout of PhoneMainActivity by the TD Ameritrade app

results in the creation of a spoofed surface QhoneMainActi—immediately after

Knox handles a user change back to the home User 0.

❖ (Right Screenshot Instantaneous focus leaving and entering the same

window, 14883, indicates a context switch (i.e. user change). Window 14883 belongs

to the TD Ameritrade app (as shown on next page). This is strong indication that a

Knox user had crossed into the User 0 space (Knox is supposed to be a completely

isolated user context and should not interact with apps in User 0 space).

 EXHIBIT 'S' 12

pitlo
Text Box
No. 111 (March 1)
Screenshot_20180301-070423

pitlo
Text Box
No. 150 (System log)

pitlo
Text Box
No. 151

pitlo
Text Box
No. 151):

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

3. A hidden overlay surface was created, “TearchSymbo” TD Ameritrade process

(14883).

• “TearchSymbo” is a spoof of TD Ameritrade’s

“SearchSymbolActivity.”

• “Tearch Symbo” was removed less than a half-

second after it was created. During that brief

timespan, the spoofed surface JnputMethod was

removed – triggering a Surface Null Session for

the Keyboard process (as shown on next page).

• The display parameters for “TearchSymbo” indicate that this spoofed surface was

hidden – invisible - not a normal UI component of the app.

o -1 → indicates no explicit parent layer (created at top-level or default parent). A

legitimate sub-view or input field would be attached to the app’s surface, but the

‘-1’ parameter means this surface was created stand-alone at root level—classic

malicious overlay behavior.

o flag=20004 → Internal bitmask of surface creation flags. 0x20000 typically

indicates HIDDEN or special property. 0x00004 often means SECURE (surface

content not allowed in screenshots/screen recording). Combined → 0x20004 → a

hidden/secure or offscreen surface.

❖ TearchSymbo” fleeting presence is consistent with exploit scaffolding rather than normal

application behavior. There's no user interaction with it, no touch, no view hierarchy.

This implies low-level injection: TearchSymbo was designed to infiltrate, execute as

specific task, and leave as few traces behind as possible.

 EXHIBIT 'S' 13

pitlo
Text Box
No. 155 (System log)

pitlo
Text Box
No. 158 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box

4. A Surface Null Session coincides with the teardown of “Jnput Method” amidst

activity involving “TearchSymbo” and TD app processes—during a sequence that

ultimately culminates with a Schwab app crash.

▪ This Surface Null Session occurred while TearchSymbo was present. Then,

WindowManager immediately destroys the actual “SearchSymbolActivity”—belonging

to the TD app.

▪ Jnput Method was created the previous day, coinciding with another Schwab app crash

(See ¶D)

▪ The negative refcount (e.g., −2/10) indicates a teardown underflow—SurfaceFlinger

attempted to remove a surface that was no longer tracked (its window token had already

been invalidated). In other words, the window was torn down after its token became stale,

suggesting a duplicate/late removal—consistent with cross-context interference.

❖ The Schwab app crashed due to a

“java.lang.RuntimeException”—the same type of

exception logged by the Surface Null Session moments

earlier. This plausibly supports the notion that the

instability caused by the Surface Null Session propagated

into a crash of the Schwab app.

 EXHIBIT 'S' 14

pitlo
Text Box
No. 155 (System log)

pitlo
Text Box
No. 158 (System Log)

pitlo
Text Box
No. 157

pitlo
Text Box
No. 180 (March 1)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
PolyLine

▪ Seconds after a crash of the TD app on May 23, a

Secure Folder task was locked, and TD’s

PhoneMainActivity resumed in the home User 0

domain.

▪ As presented above, PhoneMainActivity was spoofed

by QhoneMainActi on March 1. (See ¶H.2).

▪ Multiple instances of Knox user activity appears in the May 23 logs (multiple crashes

occurred that day).

 Pending Intents allow one app to perform actions on
behalf on another’s “intent.” With escalated privileges, the
attackers could abuse this mechanism to delegate actions
and bypass standard permission checks via broadcast
intents – precisely what could facilitate covert data transfers
and/or command cross-context execution between Knox
and User 0 boundaries.

 A PendingIntent remains active when the underlying app
is not running, has been force-closed and/or removed from
memory. It even survives reboots.

 In this case, the Knox Secure Folder is locked, and the
Pending (Broadcast) Intent is canceled, certainly consistent
with teardown of the exploit framework.

I. TD Ameritrade ’s “PhoneMainActivity ” associates with Knox Secure Folder Task
 and a Pending Intent (Broadcast Intent).

❖ UID 10260 is the TD App, further indication of their direct

coordination with Knox Secure Folder activities.

❖

 In Android’s multi-user model, a Knox/Secure Folder runs as a separate
Android user/profile (User 150), giving it its own sandboxed user space
distinct from the primary user.

 Apps inside that Knox profile get per-profile UIDs computed as userId +
appId, so their UIDs differ from the same app in user 0. So, as seen above in
screenshot No. 368, the Knox persona is activated for 15001250, and then the
TD app (UID 10260) is immediately idled.

❖

▪

▪

▪

occurred that day).

 EXHIBIT 'S' 15

pitlo
Text Box
No. 367 (Event Log)

pitlo
Text Box
No. 358 (Event Log)

pitlo
Text Box
No. 388 (System log)

J. “Illegal State Exceptions” for “PhoneMainActivity” are associated with the crashes of

the TD app on April 24 and June 1, 2018 and are consistent with teardown (i.e.,

uninstallation) of the exploit.

▪ The surrounding logs (including post-crash relaunches and component removals—not

shown here), provide additional support that these crashes represent a device-level

teardown/reset of components associated with the TD app, rather than a benign

exception occurring during a normal UI transition. (See ¶14 regarding deoptimization

of hot call sites on April 24.)

❖ An exploit that crosses profiles (Knox ↔ User 0)

can bypasses isolation via hooking into system

services and altering lifecycle anchors like

window tokens and binders. When uninstalled, a

stale or mismatched state—such as fragments

saved from the other context—can trigger

IllegalStateExceptions on restore/teardown

(e.g., “No instantiated fragment for index”).

Indeed, this is consistent with the log evidence here.

 EXHIBIT 'S' 16

pitlo
Text Box
No. 420 (June 1)

pitlo
Text Box
No. 303 (April 24) - Event Log

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

K. On March 21, 2018, a “Surface Null Session” is directly associated with the Schwab

application; that date coincides with transaction-date mismatches of the type described

in FINRA AWC No. 2019061076001 (Barclays Capital).

▪ The Surface Null Session is logged by the system_server (PID 1623 / UID 1000) for

the Schwab mobile app: com.schwab.mobile and is preceded by the removal of a surface

named “nobile”—apparently a spoof of the Schwab app itself.

▪ Knox/Secure Folder log entries appear immediately afterward, essentially handed

controls back to the home User space: This pattern is consistent with a teardown of an

injected/overlay surface from a Knox (Secure Folder) context that failed to detach

cleanly, with system_server (UID 1000) mediating cleanup.

▪ Knox TimeoutHandler entries appear in close proximity to the other Surface Null

Sessions as well (within a few hundred milliseconds), thus reinforcing the notion that the

spoofed surfaces are Knox9 owned but managed to trespass into User 0 space.

9 Several Knox vulnerabilities have been acknowledged by Samsung, including those that essentially allow attackers

to commandeer Knox.

CVE-2017-10963 – MITM lets an attacker install any app into the Knox container (without the user’s

knowledge), enabling control/data leakage inside the container.

CVE-2019-6744 – Secure Folder lock-screen handling flaw enabled local access to Secure Folder contents.

CVE-2024-20856 – Improper Authentication lets physical attackers access Secure Folder without proper

authorization

 EXHIBIT 'S' 17

pitlo
Text Box
No. 235

pitlo
Text Box
No. 264

pitlo
Text Box
No. 266
(System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
(System log)

L. A stub Webview package in the Schwab app provided a covert channel for surface

overlay attacks, intercept/inject inputs, and interfere with onscreen data rendering.

▪ (right) “System information” affirms that this crash

pertains to the Schwab mobile app.

▪ (below) The “Application data” lists two ‘Effective

WebView package version’ entries, including a

placeholder stub (VersionCode 100; VersionName

0.0.0.1). That configuration is not expected in a production

build and indicates the app was compiled or reconfigured

to use a non-production WebView—which typically

requires source-level modification and elevated device

privileges.

❖ Stub WebViews are dangerous because they’re placeholders that can be swapped or

redirected to an attacker-controlled provider, bypassing the hardened, trusted WebView

runtime. An attacker can then load hidden pages and run arbitrary JavaScript in the app’s

context—stealing cookies/tokens, abusing JavascriptInterface bridges, and manipulating

in-app data flows.

 EXHIBIT 'S' 18

pitlo
Snapshot

pitlo
Text Box
No. 6 (February 28)

pitlo
Text Box
No. 8 (February 28)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
Several instances (not shown here) involving WebView "privileged processes" and "sandboxed processes," including on March 3: the WebView's "privileged_process2" dies and restarts at the start of a Schwab app crash sequence.
(Screenshots Nos. 183-193)

pitlo
Arrow

pitlo
Snapshot

M. A “Maintenance” of the TD’s app was observed running alongside the standard instance

while Schwab app crashes occurred including on March 21.

▪ ThinkorSwim Maintenance was active

performing background tasks three minutes

after a warning for an Invalid JPEG that

processed.

▪ And three minutes later, the Schwab app

crashed.

❖ The “maintenance” instance of TD Ameritrade may have been a malicious overlay

that could communicate with Schwab’sversion of the Schwab app that was tooled to

interface with the TD back-end system. The key was to the trick was the overlay of

surfaces on the device.

 EXHIBIT 'S' 19

pitlo
Text Box
No. 205 (March 21)

pitlo
Text Box
No. 237

pitlo
Text Box
No. 229

pitlo
Text Box
No. 235

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

N. On May 23, coding errors cause the TD app to crash with Null Pointer Exceptions

involving “Phone Order Editor Activity”, “Order Editor Parameter Holders” and

“Order Entry Fragments.”

▪ This provides a unique glimpse into nature of the “coding errors”: the mechanics of

order data handling was altered—absolutely consistent with the issues described by June

2023 FINRA disciplinary action against Barclays, and necessary to facilitate a “rewiring”

of the account logic and data structures to interfere and interpose with the Schwab data.

 EXHIBIT 'S' 20

pitlo
Text Box
No. 344 (May 23)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

O. JIT inline-cache deoptimization within Zygote provided a means to rewire application

logic and data structures.

▪ “Hot” call sites (i.e., frequently executed code paths) such as java.lang.Object and

java.util.Map$Entry were deoptimized, which enabled malicious runtime manipulations.

❖ java.lang.Object is the root of the Java type hierarchy. Forcing deoptimization at

Object-related call sites opens a massive attack surface—attacker-controlled logic can

interpose at the most frequently exercised dispatch points and alter comparisons, lookups,

or other operations that affect app integrity.

❖ java.util.Map$Entry (i.e., Map.Entry): reads/writes and iteration of kev/value pairs — a

prime place to intercept lookups/returns of sensitive data (account balances, transaction

records).

 EXHIBIT 'S' 21

pitlo
Text Box
No. 327

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

P. Dynamic Heap Allocation (DHA) manipulation (“herding”) altered the runtime

environment to suppress logging, analytics, and crash reporting.

▪ Android’s Security Log Agent and other core system services were misclassified as

cached or empty (rendering them expendable even though they should never be classified

as such) and were terminated one minute before a TD app crash event on May 23.

(multiple crashes were observed that day, but only a very few visible signs appear in the

logs).

❖ Processes for both User 0 and the Knox UID

150 (Android secure badge provider) were

simultaneously targeted for elimination –

consistent with teardown of a system-level

exploit that violated Knox boundaries.

❖ The killed processes are all tagged the same

OOM_score_adj of 906 (immediately

reclaimable) and herded into DHA slot #33

to be emptied - a tell-tale sign that the

allocator was biased.

▪ . By suppressing the crash response, the attacker’s could take advantage of the devices

weakened state (like a guard stepping away from the security booth, permitting intruders

to enter uncontested and turn off the security cameras). It is suspected that the app

crashes themselves were not intended to be noticeable: Just a little blip, and then the app

restarts as it’s brought back into focus. The crashes of the Schwab app particularly

tended to occur during this restart process. The Attackers may have even believed that

everything was executing properly, and for all intents and purposes, it was—from their

end, but the chaos on my device was very noticeable. Speculation regarding the root

cause of the exploits “imperfections” is beyond the scope of this declaration.

 EXHIBIT 'S' 22

pitlo
Text Box
No. 366

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

Q. Error messages displayed frequently by the Schwab app are consistent with session

tampering and cross-context interference

▪ In addition to the crashes and other accounting discrepancies, the Schwab mobile app

repeatedly surfaced modal alerts indicative of session-state resets, user-identity context

changes, and data-availability faults, including the following:

▪ “Your session has either timed out or not been correctly established,”

▪ “Passcode disabled due to new User ID,”

▪ “This feature is temporarily unavailable…”

▪ While error messages are often the result of benign circumstances, the frequency of

these occurrences provides additional context that supports the conclusions drawn herein,

namely that these are artifacts from multiple users’ sessions clashing on the device..

 EXHIBIT 'S' 23

pitlo
Text Box
Screenshot_20180302-014611

pitlo
Text Box
No. 111

pitlo
Text Box
Screenshot_20180308-013202

pitlo
Text Box
Screenshot_20180302-031144

R. Other issues with the Schwab app indicate that app logic and data structures were

“imperfectly” rewired by the exploit.

While the exploit succeeded in misrepresenting key account figures to conceal funds targeted

by theft, there were obvious signs of tampering:

1. Notifications regularly appeared upon sign-in, alerting that: “Historical Data is

missing from one of more of your accounts,” a clear indication that transaction

histories and balance data had been altered or lost.

2. The overall account “Personal Value” and “Day Change” figures (Total Account

Value, gain/loss for the day) displayed as “$0.00” and “N/A”, respectively.

❖ This account does not contribute to the Personal Value chart” further suggests that

account balances had been “rewired.” particularly considering that, before the

Futures Account was opened, there was no such issue.

 EXHIBIT 'S' 24

pitlo
Text Box
Screenshot_20180323-144454 (and 6 other instances)

pitlo
Text Box

Screenshot_20180323-083910

pitlo
Text Box

Screenshot_20180227-113755

3. Inconsistency regarding when the last reported transactions occurred supports the

other evidence of erroneous dates and manipulated timekeeping.

 EXHIBIT 'S' 25

pitlo
Text Box

Screenshot_20180306-233638

I declare under penalty of perjury that the foregoing is true and correct.

Executed on November 6, 2025,

Respectfully submitted,

/s/David Pitlor

David Pitlor, P.E.
Licensed Professional Mechanical Engineer
Nebraska Certificate No. E-17959

 EXHIBIT 'S' 26

	Page 13

