IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF NEBRASKA

DAVID PITLOR, Case No. 8:23-cv-00407
Plaintiff,
EXHIBIT ‘S’:
Vs. DECLARATION OF DAVID PITLOR

TD AMERITRADE, INC. &
SCHWAB AND CO., INC,,

(28 U.S.C. § 1746)

Defendants.

I, David Pitlor, declare the following:

1.

I make this declaration based on my personal knowledge. The statements below summarize
device logs, event logs, stack traces, and screenshots I captured in 2018 (collectively, the
“materials.”)

The Barclays 2023 FINRA disciplinary action (AWC. No. 2019061076001) was issued
two weeks after the arbitration ended in June 2023. The recordkeeping discrepancies
described therein were attributed to “coding errors,” which led to my revisiting the logs from
the 2018 crashes of the Schwab and TD Ameritrade apps. After considerable time
deciphering the logs, I was able to make significant breakthroughs in my understanding, and
particularly regarding the Defendants’ collusion.

I am a licensed professional mechanical engineer. My experience includes the design,
operation, and troubleshooting of mechanical, electrical, and digital controls systems.

I collected more than 400 screenshots of System logs, Event logs, Stack Traces, and other

crash metadata pertaining to the crashes of the Schwab and TD app crashes. This exhibit was

EXHIBIT 'S' 1

prepared from those materials (and a few other screenshots that document other anomalies
pertaining to the Schwab app), without alteration aside from cropping and resizing images.
The original files have been or will be made available to Defendant for inspection and
copying, including:

a. Screenshots Nos. 1-278 correspond to Schwab mobile app crashes between
February 28 and April 4, 2018.
b. Screenshots Nos. 279-428: The TD Ameritrade app crashed on April 26, May 23,

May 25, and June 1, 2018. My TD account was supposedly closed in September
2017, but I was able to log in to the “ThinkorSwim” platform up to 2020.
Representative examples (A-YR) were selected for this Exhibit that most efficiently

demonstrate that my device was compromised by a sophisticated exploit chain that targeted
my Schwab account, and moreover that TD Ameritrade was integrally involved in the
scheme’s execution. | am prepared to present a more detailed analysis of the evidence
presented herein and other examples of exploit activities contained within the voluminous
body of evidence pertaining to Schwab and TD’s “coding errors.”

A secret user profile was set up on my device that was inaccessible to me (via Samsung
Knox). Malicious overlays intruded into the Home (User 0) domain to manipulate onscreen
displays, inject and capture inputs, and maliciously interfere with my Schwab app. In
addition to monitoring device activity, the exploit enabled redirection of trade orders,
selectively, as they were submitted for execution, and thereby enabled transactions to
“disappear” from the record. TD Ameritrade’s activities concerning spoofed surfaces and
Samsung Knox affirms their crucial role in this scheme.

Throughout the ensuing analysis, several CVE (Common Vulnerabilities and Exposures)
are referenced. While these CVEs describe vulnerabilities that may have been exploited

here, an app crash can facilitate similar results by forcing the system to fallback,

EXHIBIT 'S' 2

pitlo
Snapshot

temporarily, to a weakened security state, creating a window of opportunity for attackers to

escalate privileges and install/operate/teardown the exploit framework. Accordingly, the

CVE citations are provided for context, not attribution, to demonstrate how the systems

were vulnerable.

8. A timeline is presented on the next page to provide context with respect to the relevant

events that coincided with the 2018 app crashes, followed by the Table of Contents.

Exploit Evidence Connections Map

KNOX
Secure
Folder

xxxxx

T

KNOX
Switcher/
Timeout

QhoneMainActi

TITT

PhoneMainActivity

Messaging
Framework

-

Spoofed Surface/Overlay

CMH :‘lllll.llll.flll.lllll g
(Media Handler) ActiveMobile e wfxlt"':ob“e
[Network Without |.. Sesssssssssgessessssae
Classk_)ader Subscriber! lg ____________
Warnings FOTTP | B 4 .
i Schwab App e
‘ . AccountDetails...
Networking & i AccountSummary... }
Connectivity Possiverisisivsesissiversivind 3
(several issues, but not : t ¥
presented in Exhibit Q) i Surface Null e
: : . sens
: Sessions :
: |
MsssssssssssssanananssenanNn.
JavaBinder
: SystemUl Keyboard
EXIF Parser Warning
Warnings B i [.....

o | SrTTII
SecentsActi === Jnput Method 3—— ggarch Symbol

i Recents Activity : Input Method

H
:
CETETH See

Symbol and Color Key !

.
.
A

-

Crashed Component

Erroneous or Compromised

— Direct Linkage/Association

Legitimate Component

Indicated Association/Linkage

KNOX or Knox Related

peerscanss Knox association indicated

Exploit Critical |

| ====== EXxploit Critical Path

TD Ameritrade Component

EXHIBIT 'S' 3

Not detailed in Exhibit O, but corrupted image files
transmitted via messaging framework and parsed
before Surface Null Sessions and Crash events

Handler

TD Ameritrade App

PhoneOrderEditor..
PhoneMainActivity..

TearchSymbo

Activity

TD Ameritrade
Maintenance

TIMELINE

2018 Schwab and TD Ameritrade Application Crashes

= Feb. 21: Schwab Account Opened
= Feb. 27: first trades occurred:
= Feb. 28: first Schwab app crashes

o account restrictions imposed,
o $9,999,999.00 added to “Cash on Hold”

= March 1: Schwab app crash
o TD involvement first indicated w/spoofed surfaces
= March 3: Schwab app crash
= March 6: Schwab app crash
o $9,999,999.00 removed from “Cash on Hold”
= March 21 Schwab app crash:
o inaccurately documented positions
= March 23 Schwab app crash (most profitable day of trading):
o inaccurately documented positions
= March 26-28:
o Plaintiff notifies Schwab re: accounting issues and suspected
missing funds
= March 30:
o Schwab Futures Account “closed” without prior notice,
removed from account historical data.

= April 2
o Schwab informed Plaintiff that his Brokerage

Account would be closed May (and confirmed Futures
account closure)

= April 3: Schwab app crash

= April 4: Plaintiff reported to the Fraudfinder and Bridger
“Hotlists” on April 4.

= April 24: First TD app Crash

= April 26: Schwab account inaccessible.

= May 2: Scheduled closure date for Schwab account
= May 23: TD app crash
= May 25: TD app crash

= June l: TD app crash

= June 18: Another entry made to supplement or modify the
Fraudfinder and Bridger Hotlists

EXHIBIT 'S' 4

O mm U Oowp

—

® o m O

Lol A

1.

2.

3.

TABLE OF CONTENTS

Stack Traces show “coding errors” impacted Schwab account datacccceevveviiiinncnnen. 6

Schwab’s Equity Awards "coding errors" for login info (but Plaintiff was never enrolled)......7

Surface Null Sessions and spoofed surfaces compromised critical system components 8
Spoofed Surface "Jnput Method" created instead of "Input Method".ccooveevienieninnnn. 9
“Image” parsed with over 5412 EXIF components (typical max is a few hundred)................. 9
JavaBinder Warnings Indicate Binder UAF exploitccccovieviiiiiiiiinieniiicececeeeee 10
Network side-channel activated, Exif parsing exceptions, and several additional

warnings during media handling--a few seconds before a Schwab app crash......................... 11
Exploit-related activities--some involving TD Ameritrade--precede Schwab crash.............. 12
“Passcode disabled due to new User ID” supports malicious “context switches™. 12

"QhoneMainActi" spoofs the TD app's "PhoneMainActivity" after Knox User Change........ 12

“TearchSymbo”, a hidden spoofed overlay of TD's "SearchSymbolActivity"...................... 13
"Surface Null Session" involving “Jnput Method” & “TearchSymbo” precedes a
crash of the SChwab app Crash.cccciiiiiiiiiiiceeeee e 14
TD Ameritrade’s “PhoneMainActivity” associates with Knox Secure Folder Task
and a Pending INTENt..........cc.ooiiiiiiiiiceeeee ettt 15
“Illegal State Exceptions” for “PhoneMainActivity” & crashes of the TD app...................... 16

On March 21, a “Surface Null Session” impacts the Schwab app; the same day as
recordkeeping errors that match FINRA AWC No. 2019061076001 (Barclays)........... 17
A stub WebView package in the Schwab app provided a covert channel for surface
overlay attacks, input intercepts/injection, and interference with onscreen rendering. 18
A “maintenance” instance of the TD’s app was observed running alongside the standard
instance of the TD app while Schwab app crashes occurredcccccoevveviiiiiiineiniennens 19

TD app crash involving “Phone Order Editor Activity”, “Order Editor Parameter

Holders” and “Order Entry Fragments.”.........cccoeceeiiierienieniece e 20
JIT inline-cache deoptimization within Zygote facilitated runtime manipulation. 21
Dynamic Heap Allocation (DHA) "herding" suppressed security services & reporting......... 22
Schwab app error messages indicate session tampering and cross-context interference 23

Other indications that logic and data structures were “imperfectly” rewired by the exploit. .24

“Historical Data is missing from one of more of your accounts,” indicates that

transaction histories and balance data had been altered or lost.cccccoeriiininiinennnn. 24
“Personal Value” (Total Account Value) and “Day Change” figures (gain/loss)

displayed as “$0.00” and “N/A”, 1€SPECLIVELY.cc.eruiriiriirierieieieieieee e 24
Contradictory info displayed regarding when last transaction occurred supports the

other evidence of erroneous dates and manipulated timekeepingcccceveverveerueenenne 25

EXHIBIT 'S' 5

pitlo
Text Box
TABLE OF CONTENTS

A. The Stack traces show that “coding errors” impacted Schwab account data, including
“AccountSummaryActivity” and “AccountDetailsTabActivity.”

= The exceptions involved “obfuscated” account data structures like

com.schwab.mobile.f.a.g and com.schwab.mobile.f.a.z.v()>. As such, inside access to

Schwab’s back-end systems and source code was necessary to “weaponize” the crash

events.
No. 180 (March 1)

Stack trace

java.lang.RuntimeException:
Unable to start activity
Componentinfo{com.schwab.mobile/
com.schwab.mobile.activity.acc
ount.AccountDetailsTabActivity}:
java.lang.NullPointerException: Attempt
to invoke virtual method ‘java.util.List
com.schwab.mobile.f.a.z.a(int)' on a null
object reference

at
android.app.ActivityThread.performLaunch
Activity(ActivityThread java:2961)

at
android.app.ActivityThread handleLaunchAc
tivity(ActivityThread.java:3022)

at android.app.ActivityThread -
wrap14(ActivityThread java)

at
android.app.ActivityThread$H.handleMessa
ge(ActivityThread java:1657)

at
android.os.Handler.dispatchMessage(Hand|
erjava:102)

at android.os.Looperloop(Looperjava:
154)

at
android.app.ActivityThread.main{ActivityThr
ead.java:6732)

at java.lang.reflect. Method.invoke({Mative
Method)

at
com.android.internal.os.Zygotelnit$Method

No. 9 (February 28)

Stack trace

java.lang.RuntimeException:
Unable to start activity
Componentinfo{com.schwab.mobile/
com.schwab.mobile.activity.acc
ount.AccountSummaryActivity}:
java.lang.MullPointerException:
Attempt to invoke virtual method
‘com.schwab.mobile.f.a.g
com.schwab.mobile.f.a.z.v()' on a null
object reference

at
android.app.ActivityThread.performLaunch
Activity(ActivityThread.java:2961)

at
android.app.ActivityThread.handleLaunchAc
tivity(ActivityThread.java:3022)

at android.app.ActivityThread -
wrap14(ActivityThread.java)

at
android.app ActivityThread$H.handleMessa
ge(ActivityThread. java:1657)

at
android.os.Handler.dispatchMessage(Hand|
erjava:102)

at android.os Looper.loop(Looperjava:
154)

at
android.app.ActivityThread.main(ActivityThr
ead.java:6732)

at java.lang.reflect. Method.invoke(Native
Method)

at

< NullPointerException can compromise an application’s stability and data integrity in a

variety of ways, including interruption of workflows mid-operation, resource leaks, and

state desynchronization.

2 ProGuard is an Android built tool used to optimize and obfuscate app code—renaming to short,
meaningless symbols (e.g., com.schwab.mobile.f.a.z.v()). A mapping file is required to convert those
symbols into the names of the actual data. In short, this renders implausible any suggestion that Plaintiff,
or anybody else without access to Schwab’s source code and backend systems, could have been

responsible for this exploit.

EXHIBIT 'S'

pitlo
Text Box
No. 9 (February 28)

pitlo
Text Box
No. 180 (March 1)

pitlo
Arrow

pitlo
Arrow

B. On March 6, 2018, around the time $9,999,999.00 was removed from the Cash on Hold
balance,’ Null Pointer Exceptions indicate “coding errors” pertaining to login activities
for Schwab’s Equity Awards (which Plaintiff was never enrolled in).

No. 197 (March 6)

= Schwab Equity Awards is Schwab’s platform for I 0
Stack trace
employees and other plan participants to manage | java.lang.NullPointerException:
Attempt to invoke virtual method
: . : : ‘android.content. SharedPreferences
company equlty compensatlon—e.g., viewing grants r android.content.Context.getSharedPreferen
. . L. ! ces(java.lang.String, int)" on a null object
and vesting schedules, accepting awards, exercising reference
at
. . . ——» com.schwab.mobile.equityawards.c.c.a(S
stock options, selling shares, and handling tax Sl b e R
. | &
withholding/reporting. It’s used by companies that hire e e s S
| eFile:791)
. . . . | at
SChwab as thelr equlty plan admIHIStrator' SChwab | com.schwab.mobile.activity.login.b.a(Sourc
1 eFile:7 5?)
Equity Awards typically links to a Schwab brokerage | at f

— com.schwab.mobile.activity.login.LoginActi
. vity$4.a(SourceFile:376)
account to settle exercises or sales. =
com.schwab.mobile.auth.pin.b.a(SourceFile
:73)
at

.. . . com.schwab.mobile.auth.pin.b.a(SourceFile
* Plaintiff was not enrolled in Schwab Equity Awards, com.schwab.mobile.auth.pin.b.a(Sourcefi
at
nor was there any legltlmate basis for any such -;;om.:;r.hvmb mobile.auth.pin.b$1.b(SourceF
ile:54
.. at
aCtIVIty- com.schwab.mobile.auth.pin.PinEntryWidge

t$2.run(SourceFile:108)
at
android.os.HandlerhandleCallback(Handler.

3 There is substantial evidence that an errant transfer somehow landed in Plaintiff’s account on
February 28, 2018. Whether it was for $9,999,999.00 or a different amount, the Defendants were
keen to remove the funds and eliminate the evidence that any such event occurred. The
accounting “sleight of hand” was achieved via a clandestine linkage between Schwab and TD’s
systems — using Plaintiff’s Android smartphone as the intermediary (and utilizing Plaintiff’s
“closed” TD Ameritrade account as a key facilitator in making funds and transaction data
“disappear” from Schwab’s domain). After the Cash on Hold sum was removed, the contorted
account structures continued to be leveraged thereafter to steal money and eliminate the
evidence. While the exploit succeeded in some respects (indeed the errors in the official records
are rather subtle, making proof of theft virtually impossible without the benefit of the live
account balances captured by Plaintift’s screenshots), apparently the app crashes and other errors
on the device were significantly louder and messier than the attackers had planned. The
noticeable signs of tampering of the Schwab app seem to be unintentional consequences of the
exploit’s imperfect execution (e.g. “Historical data is missing from some of your accounts”, and
several other anomalies). It seems the attackers may have been unaware that their “stealthy”
exploit was actually rather noisy.

EXHIBIT 'S'

-3

pitlo
Text Box
No. 197 (March 6)

pitlo
Arrow

pitlo
Arrow

No. 75 (System log)

C. Spoofed surfaces and Surface Null Sessions 02-28 23:34:02.843 |/
compromised critical system components including SurfaceFlinger(483):id=2951

the SystemUI“, Keyboard, and the Schwab app itself.

See K —

Removed SecentsActi (2/7)
02-28 23:34:02.843 I/

The presence of Surface Null Sessions impacting SurfaceFlinger(483): id=2951

—>» Removed SecentsActi (-2/7)

core system processes indicates that privileged 02-28 23:34:02.844 D/Mms/

Binder’ connections were rendered vulnerable to

ComposeMessageFragment(5010):
Emoticon check
SipHandler.isSipVisible()=true

compromise.
02-28 23:34:02.844 D/Mms/
On February 28", the removal of the spoofed ComposeMessageFragment(5010):
. . Emoticon check SIP up
surface, “Secents Acti” interfered with the actual 02-28 23:34:02.845 D/Mms/

“RecentsActivity” and triggerred a Surface Null

MessageListView(5010):
getLastReceivedMessage

Session that destabilized the actual systemUI 02-28 23:34:02.846 W/

(Process 2247)

schwab.mobile

Schwab App
(UID 1000)

Surface Null
Sessions

_,| SystemUl Keyboard

(2247) (PID 9879)

1 Recents Activity | Input Method

@

WindowManager(1621); Exception

thrown when destroying Window

WindowStateAnimator{bbafc4

com.android.systemui/

com.android.systemui.recents.Rec
— entsActivity} surface null session

Session{dec9b1b 2247:u0a10074}:

java.lang.RuntimeException:

Not created this service :

TAG AOD WINDOW MANAGER

¢ A Surface Null Session occurs when the
window manager attempts to operate on a surface
whose session reference is null—commonly because
the surface was just torn down, not yet created, its
owner process died, or it belongs to another user
context (e.g. Knox).

¢ Each Surface Null Session was associated
with the teardown of a spoofed surface that
overlayed a legitimate component.

4 CVE-2018-9524 (Insufficient SystemUI overlay protections): This vulnerability permitted a local
app to manipulate overlay windows (special Ul layers drawn on top of other content) without proper
permission checks or bounds validation. This enabled spoofed inputs, hijacking touches/keystrokes, and
tricking SystemUI into dispatching privileged actions on the attacker’s behalf. Critically, this also
facilitated spoofed surfaces (crafted objects masquerading as legitimate display layers) to move across
context boundaries (e.g., from Knox into User 0)

3> Binders are Android's inter-prcess communication mechanism that all apps use to communicate with
other processes.

EXHIBIT 'S'

3

pitlo
Text Box
No. 75 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
See ¶K

pitlo
Arrow

pitlo
Arrow

D. Immediately after the Surface Null Session on Feb. 28, the system attempts to relayout
“Input Method” but the spoofed surface “Jnput Method” was created.

(Not shown: a few milliseconds before Jnput Method
was created, secure settings were altered
programmatically amidst a flurry of messaging activity—
too quick to be user interaction — to alter Input Method
settings and Keyboard Shortcuts, apparently leveraging
CVE-2021-25393° or a similar vulnerability that enabled

arbitrary manipulation of Secure Settings.)

No. 76 (System log)
02-28 23:34:02.848 V/
WindowManager(1621):

Relayout Window{ca93d11d0

u0 InputMethod}:

viewVisibility=0 req=1280x552
WM.LayoutParams{(0,0)
(fillxwrap) gr=#50 sim=#120
ty=2011 fl=#1800108 fmt=-2
wanim=0x7f0e000a vsysui=0x300
needsMenuKey=2 dimDuration=150
navilconColor=0 sfl=0x800}

02-28 23:34:.02.848 |/
SurfaceFlinger(483): id=2986
createSurf (1280x552),1 flag=4,
JnputMethod

E. “Image” parsed with abnormally large number of EXIF components

After “Jnput Method” was created, an “image” file
with over 5,000+ EXIF components was parsed.
Typically, an image file contains dozens to, at most,
several hundred components. The context in which this
log appears (immediately after Null Session and spoofed
surface created), indicates rearming freed Binder

references with an attacker controlled object table.

No. 77 (System log)

02-28 23:34:02.852 W/Mms/
ExifParser(5010): Number

of component is larger then
MAX_COMPONENT_COUNT : 5412
02-28 23:34:02.855 E/Mms/
TelephonyUtils(5010):
nameForFileSystemn.length() 38
nameForContentsLocation.length()
38

¢ CVE-2021-25393 is an improper intent sanitization issue in Samsung’s SecSettings that permitting
arbitrary file read/write with the system UID. This primitive manipulate the settings that govern
InputMethod registration. Exploitation of this type of vulnerability was combined with a Binder UAF
(CVE-2019-2215 or similar) to reach into the SystemUI and hijack privileged binder paths.

EXHIBIT 'S' 9

pitlo
Text Box
No. 76 (System log)

pitlo
Text Box
No. 77 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

No. 78 (System log)

> Despite the warnings, parsing was not halted and 02-28 23:34:02.879 E/

Mms/slideshow(5010):
isRawAttachmentPresent = false
02-28 23:34.02.879 E/
Mms/slideshow(5010):
isRawAttachmentPresent = false
02-28 23:34:02.879 D/
Mms/BaselListltem(5010):
bindContentView() - time = 2
02-28 23:34:02.880 D/Mms/
Baselistltem(5010): bindView
131072

02-28 23:34.02.881 D/
ComposerPerformance(5010):
6548413 ms / [END] bindView
02-28 23:34:02.881 D/Mms/
UlUtils(5010): transportTypeNum =
2 getContentType = text/plain

proceeded to bindView. This pattern is consistent with
image-parser weaknesses described in CVE-2019-
19877 whereby malformed images were able to drive

abnormal allocations.

F. JavaBinder Warnings Indicate Binder UAF Exploit
No. 91 (System log)

JavaBinder warnings are logged for the SystemUI 02-28 23:37:32.678 W/
JavaBinder(2247): BinderProxy is
process (PID 2247) approximately three minutes after the being destroyed but the application
did not call unlinkToDeath to
SystemUI encountered a Surface Null Session (see above unlink all of its death recipients

beforehand. Releasing leaked death
recipient: com.android.systemui.qgs.
external.TileLifecycleManager

; ity 8 02-28 23:37:32.678 W/
Binder Use-After-Free (UAF) vulnerability. JavaBinder(2247 BinderProxy is
being destroyed but the application
did not call unlinkToDeath to
unlink all of its death recipients
beforehand. Releasing leaked death
recipient: com.android.systemui.qgs.

9C). This sequence is consistent with the exploitation of a

A Binder UAF can be exploited to marshal a malicious

parcel (a serialized data container used in Binder transactions

for passing parameters across processes). In this instance, a external TileLifecycleManager
C 02-28 23:37:32.679 I/
malicious “image” file was inserted into a privileged Controller(5753): [#CMH#]
. . . . storagepermisssion= 0
rendering path (Samsing CMH) while a screenshot was being storage permisssion with an
processed (“piggybacking” on legitimate activity). extra's' - uncertain relevanct

The JavaBinder warnings confirm that, after the freed binder introduced the malicious parcel,
the dangling binders were cleaned up. Just a few hundred milliseconds later, an abnormal

“image” file was parsed (see next page, YG), ultimately leading to a crash of the Schwab app.

7 The decode-then-bindView sequence despite parser irregularities aligns with CVE-2019-1987’s description of out-
of-bounds writes in Skia’s image sampling when parsing malformed images. This is cited here to show the type of
weakness implicated.

8 Binder User-After-Free is a of memory corruption issue in Android's Binder IPC (Inter-process communication)

framework where a Binder object is prematurely freed but subsequently referenced, allowing attackers to manipulate
the freed memory slot.

EXHIBIT 'S' 10

pitlo
Text Box
No. 78 (System log)

pitlo
Text Box
No. 91 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
storage permisssion with an extra 's' - uncertain relevance

pitlo
Arrow

G. Network side-channel activated, Exif Parsing Exceptions, and several additional
warnings--a few seconds before a Schwab app crash, as screenshot is processed by
Samsung CMH (confirmed by preceding screenshots- not shown here).

0. 87
System lo

HCLEJ\LCI Hnarauun GBCIUIUUIIUVIUUC S |
02-28 23:37:32.396 D/
MountService(1621):
getExternalStorageMountMode :
final mountMode=1, uid : 5004,
packageName : com.samsung.cmh
02-28 23:37:32.411 |/
ActivityManager(1621): Start proc
5753:com.samsung.cmh:CMH/
5004 for service com.samsung.cmh
/.service.CMHService

02-28 23:37:32.412 E/Zygote
(5753):v2

02-28 23:37:32.412 |/

libpersona(5753): KNOX_SDCARD
checking this for 5004

02-28 23:37:32.412 1/

libpersona(5753): KNOX_SDCARD
not a persona

02-28 23:37:32.412 D/
CMHServicelnterface(18573):
Sending intent to CMH

02-28 23:37:32.413 E/Zygote
(5753): accessinfo : 0

02-28 23:37:32.413 l/art (1621):
Background partial concurrent
mark sweep GC freed 40649(2MB)

No. 94
System log
[#CMH#] Bound to Package
com.samsung.dcmservice

02-28 23:37:32.901 W/
Networkldentity(1621): Active

mobile network without subscriber!

02-28 23:37:32.901 W/
Networkldentity(1621): Active

mobile network without subscriber!

02-28 23:37:32.901 W/
Netwaorkldentity(1621): Active

mobile network without subscriber!

02-28 23:37:32.901 W/
Networkldentity(1621): Active

mobile network without subscriber!

02-28 23:37:32.901 W/
Metworkldentity(1621): Active

mobile network without subscriber!

Binder warning (F) logged at 23:37:32.678

No. 89
Systemlog __
Compatibilitylnfo(1621):
applicationScale - 1.0

02-28 23:37:32.482 |/SA
[OCP] Cursor is not null

02-28 23:37:32.487 |/art

(5753): Starting a blocking GC
AddRemoveApplmageSpace
02-28 23:37:32.488 W/System

(5753): ClassLoader referenced
unknown path: /system/priv-app/
CMHProvider/lib/armé4

02-28 23:37:32.491 D/
SmartAlertController(1621):
SmartAlert - Found Missed Event
02-28 23:37:32.491 D/
SmartAlertController(1621):
SmartAlert - already registered or
Setting disabled

02-28 23:37:32.496 I/
[SC]CommonUtil(4888): email :
0 tncState :0 nameCheckState : 0
emailValidationState : 0

02-28 23:37:32.503 I/
[SC]MediaDetectionService(4888):
action: com.samsung.android.s
cloud.MEDIA_SYNC, operation:

1

(4927):

No. 95
System log
Networkldentity(1621): Active
mobile network without subscriber!
02-28 23:37:32.926 I/
Exifinterface_JNI(5753): Raw
image not detected
02-28 23:37:32.932 W/
Exifinterface(5753): Invalid image:
Exiflnterface got an unsupported
image format file(Exifinterface
supports JPEG and some RAW
image formats only) or a corrupted
JPEG file to Exiflnterface.
02-28 23:37:32.932 W/
Exifinterface(5753):
java.io.lOException: Invalid marker:
89
02-28 23:37:32.932 W/
Exifinterface(5753): at
android.media.Exifinterface.getJpeg
Attributes(Exiflnterface.java:1835)

l

No. 93

System log

Controller(5753): [#CMH#|
setSuccessState = true

02-28 23:37:32.861 1/
Controller(5753): [#CMH#]
setSuccessState latch is down
02-28 23:37:32.861 1/
Initializer(5753): [#CMH#] CMH
initialization ends

02-28 23:37:32.862 I/

> Controller(5753): [#CMH#]
com.android.providers.media Insert
02-28 23:37:32.863 I/
ServiceManager(5753): [#CMH#]
FaceService already stopped:

02-28 23:37:32.863 I/
ServiceManager(5753): [#CMH#]
StoryService already stopped:
02-28 23:37:32.863 1/

[Controller(5753): [#CMH#]
processinsertAction,No of files to
insert: 1,0rigin:com.android.provide
rs.media
02-28 23:37:32.869 1/

> DayAndMonthTask(5753): [#CMH#]

after mutex release

02-28 23:37:32.872 |/art

(5803): Starting a blocking GC

[TSEY

No. 38

Event Iout_:! L

sysui_action(1621): [324,false]

02-28 23:37:36.184 1/
sysui_action(1621): [325,88856]

02-28 23:37:36.188 I/
am_finish_activity(1621): [0,1745
67712,7565,com.android.vending/
com.google.android.finsky.act
ivities. AppCrashProxy,app-
request]

02-28 23:37:36.238 |/
sf_frame_dur(483): [Application
Error: com.schwab.mobile,
1,0,0,0,0,0,0]

02-28 23:37:36.339 1/
am_proc_start(1621):
[0,5840,10018,com.google.android.
gms.ui,activitycom.google.android.g
ms/.feedback.FeedbackActivity]

The warning‘Active mobile network without subscrifeappears to reflect a networking

side-channel being activated just seconds before the Schwab app crash on February 28
coinciding with a maliciously craftetimagé€ file being parsed

EXHIBIT 'S' 11

pitlo
Text Box
No. 87

pitlo
Text Box
No. 89

pitlo
Text Box
No. 93

pitlo
Text Box
No. 94

pitlo
Text Box
No. 95

pitlo
Text Box
No. 38

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
The warning “Active mobile network without subscriber” appears to reflect a networking side-channel being activated just seconds before the Schwab app crash on February 28 – coinciding with a maliciously crafted “image” file being parsed

pitlo
Text Box
G. Network side-channel activated, Exif Parsing Exceptions, and several additional
 warnings--a few seconds before a Schwab app crash, as screenshot is processed by
 Samsung CMH (confirmed by preceding screenshots- not shown here).

pitlo
Text Box
Binder warning (¶F) logged at 23:37:32.678

pitlo
Snapshot

H. The next morning, on March 1, a series of exploit-related activities precede the crash of

the Schwab app, some of which involve TD Ameritrade. No. 111 (March 1)
Screenshot 20180301-0704

1. First, at 7:04 am, the Schwab app alerted:
“Passcode disabled due to new User ID” (just
after another crash event), supporting the notion
of “context switches” involving secret users.

Notice

Passcode disabled due to new User
D

2. Then, at 8:44 am, the relayout of PhoneMainActivity by the TD Ameritrade app
results in the creation of a spoofed surface QhoneMainA cti—immediately after
Knox handles a user change back to the home User 0.

No. 150 (System log) No. 151

03-01 08:44:38.999 D/
KnoxTimeoutHandler(1621):

—» handleActiveUserChange S_yStem Iog
[MsgParam] userld: 0 fullscreen 5“”“‘3*“”9_@“ 483): 10=4511
is true showWhenlocked is false createSurf (720x1280),1 flag=404,
isMutiwindowRecord is false QhoneMainAc
multiwindowstyle is 0 03-01 08:44:39.004 D/
03-01 08:44:38.999 |/ WindowManager(1621): set
KnoxTimeoutHandler(1621): systemUiVisibility of statusbar : vis=
Shared devices show user 0x608
statefalae 03-01 08:44:39.006 D/

03-01 08:44:39.003 V/
WindowManager(1621):
—3» Relayout Window{da33e69d0

InputDispatcher(1621): Focus left
window: 14883

u0 com.devexperts.tdmobile.pl 03-01 08:44:39.006 D/
atform.android.thinkorswim/ InputDispatcher(1621): Focus
com.devexperts.tdmobile.p entered window: 14883

—>» hone.PhoneMainActivity}:
viewVisibility=0 req=720x1280
WM. LayoutParams{(0,0)(fillxfill)
sim=#20 ty=1 fl=#81810100
pfl=0x20000 wanim=0x1030465
vsysui=0x600 needsMenuKey=2
navilconColor=0}

% (Right Screenshot No. 151)Instantaneous focus leaving and entering the same
window, 14883, indicates a context switch (i.e. user change). Window 14883 belongs
to the TD Ameritrade app (as shown on next page). This is strong indication that a
Knox user had crossed into the User 0 space (Knox is supposed to be a completely

isolated user context and should not interact with apps in User 0 space).

EXHIBIT 'S' 12

pitlo
Text Box
No. 111 (March 1)
Screenshot_20180301-070423

pitlo
Text Box
No. 150 (System log)

pitlo
Text Box
No. 151

pitlo
Text Box
No. 151):

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

3. A hidden overlay surface was created, “TearchSymbo” TD Ameritrade process
(14883).
No. 155 (System log)

e “TearchSymbo” is a spoof of TD Ameritrade’s TG
03-01 08:44:39.317 D/SEM_CLIP_
“SearchSymbolActivity.” SemClipboardManager(14883):

isCocktailBarDisplayed : false
03-01 08:44:39.318 V/
InputMethodManager(14883):

e “Tearch Symbo” was removed less than a half- Starting input; tba=android.view
. . . .inputmethod.Editorinfo@d4a370d
second after it was created. During that brief nm : com.devexperts.tdmabile.
platform.android.thinkorswim

timespan, the spoofed surface JnputMethod was ic=null

03-01 08:44:39.319 1/

removed — triggering a Surface Null Session for InputMethodManager(14883):

the Keyboard process (as shown on next page). [IMM] startinputinner - mService.sta
rtinputOrWwindowGainedFocus
..Ho 58 (System log) SurfaceFlinger(483): id=4512
03-01 08:44:39.721 1/ createSurf (720x1280),-1
SurfaceFlinger(483): id=4512 flag=20004, TearchSymbo
Removed TearchSymbo (6/9) 03-01 08:44:39.319 D/
03-0108:44:39.721 1/ InputMethodManagerService(
SurfaceFlinger(483): id=4512 1621): windowGainedFocus
Removed TearchSymbo (-2/9) mCurrentFocusedUserld - 0 and

e The display parameters for “TearchSymbo™ indicate that this spoofed surface was

hidden — invisible - not a normal UI component of the app.

o -1 — indicates no explicit parent layer (created at top-level or default parent). A
legitimate sub-view or input field would be attached to the app’s surface, but the
‘-1’ parameter means this surface was created stand-alone at root level—classic
malicious overlay behavior.

o flag=20004 — Internal bitmask of surface creation flags. 0x20000 typically
indicates HIDDEN or special property. 0x00004 often means SECURE (surface
content not allowed in screenshots/screen recording). Combined — 0x20004 — a
hidden/secure or offscreen surface.

¢ TearchSymbo” fleeting presence is consistent with exploit scaffolding rather than normal
application behavior. There's no user interaction with it, no touch, no view hierarchy.
This implies low-level injection: TearchSymbo was designed to infiltrate, execute as

specific task, and leave as few traces behind as possible.

EXHIBIT 'S' 13

pitlo
Text Box
No. 155 (System log)

pitlo
Text Box
No. 158 (System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box

.7 obile.platform.android.thinkorswim/

4. A Surface Null Session coincides with the teardown of “Jnput Method” amidst
activity involving “TearchSymbo” and TD app processes—during a sequence that
ultimately culminates with a Schwab app crash.

= This Surface Null Session occurred while TearchSymbo was present. Then,
WindowManager immediately destroys the actual “SearchSymbolActivity”—belonging
to the TD app.

= Jnput Method was created the previous day, coinciding with another Schwab app crash
(See D)

No. 157

- No. 158 (System Log)

No. 155 (System log)

AA 03-01 08:44:39.721 I/
23 ?1 O?:ﬁd'sg':};g;; id=4512 US\y'gtlevrﬂjlggLWL v SurfaceFlinger(483): id=4512
urface |nger{ x SUI’fE‘CE‘thgEF{ 483)2 id=4510 Removed TEHFChS‘,I'me (6[@)
createSurf (720x1280)-1 Removed JnputMethod (-2/10) N "
flag=20004, TearchSymbo 03-01 08:44:39.721 I/
03-01 08:44:39.583 W/ SurfaceFlinger(483): id=4512
WindowManager(1621): Exception Removed TearchSymbo (-2/9)

thrown when destroying Window
WindowStateAnimator{df59d03
InputMethod} surface null session
Session{2d16c95 9879:u0a10150}:
. java.lang.RuntimeException:
L Not created this service :
e TAG_AOD_WINDOW_MANAGER
e 03-01 08:44:39.721 1/
e WindowManager(1621):
e Destroying surface
L Surface(name=com.devexperts.tdm

com.devexperts.tdmobile.android.u
i.quotes.SearchSymbolActivity_dim)

= The negative refcount (e.g., —2/10) indicates a teardown underflow—SurfaceFlinger
attempted to remove a surface that was no longer tracked (its window token had already
been invalidated). In other words, the window was torn down after its token became stale,

suggesting a duplicate/late removal-—consistent with cross-context interference.
No. 180 (March 1)

« The Schwab app crashed due to a
Stack trace

(154 b . 29
java.lang RuntimeException: java.lang RuntimeException”—the same type of
Unable to start activity . .
Componentinfo{com.schwab.mobile/ exception logged by the Surface Null Session moments
com.schwab.mobile.activity.acc
ount. AccountDetailsTabActivity}: earlier. This plausibly supports the notion that the

— b java.lang.NullPointerException: Attempt] .)

to invoke virtual method ‘java.util List instability caused by the Surface Null Session propagated
com.schwab.mobile.f.a.z.a(int)' on a null
object reference into a crash of the Schwab app.

EXHIBIT 'S' 14

pitlo
Text Box
No. 155 (System log)

pitlo
Text Box
No. 158 (System Log)

pitlo
Text Box
No. 157

pitlo
Text Box
No. 180 (March 1)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
PolyLine

I. TD Ameritrade’s “PhoneMainActivity” associates with Knox Secure Folder Task
and a Pending Intent (Broadcast Intent).
No. 388 (System log)

05-23 08:18:14.202 I/GAv4 (5644):
adb shell setprop log.tag.GAv4 DEBUG

= Seconds after a crash of the TD app on May 23, a | 052308:18:14.2021/GAv4 (5644):
adb logcat -s GAv4

Secure Folder task was locked, and TD’s D0 08 101 e SO

———» E:LockSecureFolderTask(2863)
. .. . started: 150
PhoneMainActivity resumed in the home User 0 05.25 08:16-14.903 D/KNOXCORE: L ock
X SecureFolderTask(2863): ResumedAc-
domain. tivity userldO[com.devexperts.tdmo

bile.platform.android.thinkorswim/

com.devexperts.tdmobile.phone.Phon

eMainActivity]

. . 05-23 08:18:14.210 D/

by QhoneMamActl on March 1. (See ﬂHZ) SamsungAlarmManager(1410): Cancel
Alarm calling from uid:10260 pid: ¢——F——
5644 / op:Pendingintent{e1796e6:

—— » PendingintentRecord{be98427

/ com.devexperts.tdmobile.pl
atform.android.thinkorswim
broadcastintent}}

= As presented above, PhoneMainActivity was spoofed

* Multiple instances of Knox user activity, appears in the May 23 logs (multiple crashes

occurred that day). /
No. 367 (Event Log) + Pending Intents allow one app to perform actions on
| 052307:55400201/ &¢— | behalf on another’s “intent.” With escalated privileges, the
| am_proc_died(1410): [150,28962 . . .
| oo et ancircid providek Backe' attackers could abuse this mechanism to delegate actions
906,17,208,1819] and bypass standard permission checks via broadcast
E‘,;"fff} 1?5;3232 ?dlfc.}: 15010006 <€ intents — precisely what could facilitate covert data transfers
AEAn A an nan and/or command cross-context execution between Knox
No. 358 (Event Log) and User 0 boundaries.

05-23 07:49:52.630 I/
am_proc_bound(1410): [0,28273,com.5

—3 amaung android knox.containeragent] . A PendingIntent remains active when the underlying app
05-23 07:49:52.775 |/am_kill is not running, has been force-closed and/or removed from
(1410): [0,24994,com.pinsight.dw, It . boot
906,17,DHA-empty #33] memory. It even survives reboots.

05-23 07:49:52.780 1/
g id ning{ 1410): 15001250 <«—— . .
ot 38 070,55 805 | g . In this case, the Knox Secure Folder is locked, and the
——» am_proc_start(1410): [150,28292,1500 Pending (Broadcast) Intent is canceled, certainly consistent
1250,com.samsung.android.knox.contai : :
neragent,broadcast,com.samsung.andro with teardown of the cXp loit framework.
id knox.containeragent/.switcher.knoxus
——» age.KnoxUsageReceiver]
05-23 07:49:52.832 1/
am_uid_idle(1410): T0260 | e e e e e e e m e m e e — e — e — e ————————— - 1
4 !

+ UID 10260 is the TD App, further indication of their direct
coordination with Knox Secure Folder activities.

“ In Androids multi-user model, a Knox/Secure Folder runs as a separa
Android user/profile (User 150), giving it its own sandboxed user space
distinct from the primary user.

= Apps inside that Knox profile get per-profile UIDs computed as userld -
appld, so their UIDs differ from the same app in user 0. So, as seen abo
screenshot No. 368, the Knox persona is activated for 15001250, and the
TD app (UID 10260) is immediately idled.

EXHIBIT 'S' 15

pitlo
Text Box
No. 367 (Event Log)

pitlo
Text Box
No. 358 (Event Log)

pitlo
Text Box
No. 388 (System log)

J. “Illegal State Exceptions” for “PhoneMainActivity” are associated with the crashes of
the TD app on April 24 and June 1, 2018 and are consistent with teardown (i.e.,
uninstallation) of the exploit.

* The surrounding logs (including post-crash relaunches and component removals—not
shown here), provide additional support that these crashes represent a device-level
teardown/reset of components associated with the TD app, rather than a benign
exception occurring during a normal Ul transition. (See Y14 regarding deoptimization

of hot call sites on April 24.)

No. 303 (April 24) - Event Log No. 420 (June 1)

‘ Stack trace I

| java.lang.RuntimeException: Unable to start
activity Componentinfo{com.devexperts.tdmo
bile.platform.android.thinkorswim/com.deve
\ xperts.tdmobile. phone.PhoneMainActivity}¢————
s java.lang.lllegalStateException: No instantiated €—
fragment for index #27
at
| android.app.ActivityThread.performLaunchActi
| vity(ActivityThread.java:2957)
at
! android.app.ActivityThread.handleLaunchActivi
1 ty(ActivityThread java:3032) b
1 at
|
|

android.app.ActivityThread.-wrap11(Unknown
Source:0)

at
android.app.ActivityThread$H.handleMessage(
ActivityThread.java:1696)

at
android.os.Handler.dispatchMessage(Handler.j
ava:105)

at android.os.Looper.loop(Looper.java:164)

at

o .
% An exp101t that Crosses prOﬁleS (Knox <> User O) android.app.ActivityThread. main{ActivityThrea

. d.java:6940)
can bypasses isolation via hooking into system at java.lang.reflect Method.invoke(Native
Method)
services and altering lifecycle anchors like at

com.android.internal.os.Zygote$MethodAndAr
gsCaller.run(Zygote.java:327)

at
com.android.internal.os.Zygotelnit. main(Zygot

window tokens and binders. When uninstalled, a

stale or mismatched state—such as fragments elnit java:1374)
Caused by: java.lang.lllegalStateException: No
saved from the other context—can trigger instantiated fragment for index #27

at
android.support.vd.app.FragmentManagerimpl
_ restoreAliState(FragmentManager java:3097)

Py

IllegalStateExceptions on restore/teardown

(e.g., “No instantiated fragment for index”).

Indeed, this is consistent with the log evidence here.

EXHIBIT 'S' 16

pitlo
Text Box
No. 420 (June 1)

pitlo
Text Box
No. 303 (April 24) - Event Log

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

K. On March 21, 2018, a “Surface Null Session” is directly associated with the Schwab
application; that date coincides with transaction-date mismatches of the type described

in FINRA AWC No. 2019061076001 (Barclays Capital).

. The Surface Null Session is logged by the system_server (PID 1623 / UID 1000) for
the Schwab mobile app: com.schwab.mobile and is preceded by the removal of a surface
named “nobile”—apparently a spoof of the Schwab app itself.

. Knox/Secure Folder log entries appear immediately afterward, essentially handed
controls back to the home User space: This pattern is consistent with a teardown of an
injected/overlay surface from a Knox (Secure Folder) context that failed to detach
cleanly, with system_server (UID 1000) mediating cleanup.

. Knox TimeoutHandler entries appear in close proximity to the other Surface Null
Sessions as well (within a few hundred milliseconds), thus reinforcing the notion that the
spoofed surfaces are Knox” owned but managed to trespass into User 0 space.

f No. 235 - | SurfaceFlinger(481): id=4128 No. 264
——» Removed nobile (2/9) S
(System log
Event log l | 03-2115:35:30.740 W/)
—t» am_crash(1623): _ . WindowManager(1623): Exception
[32507,0,com.schwab.mobile, thrown when destroying Window
949501508, java.lang.NullPointerEx WindowStateAnimator{dabb14
| ception,Attempt to invoke virtual Starting com.schwab.mobile}
* method ‘java.util.List com.schwab.m | surface null session
ob@le.commona.xa(int)' ona null «:> Session{c67abb3 1623:1000}:
object refergnce,SourceF:leJ 33] | java.lang.RuntimeException:
03-21 1_5.35‘2.6:718 I/ | Not created this service :
| am_finish_activity(1623): | TAG_AOD_WINDOW_MANAGER

| [0,108380737,8860,com.schwa

| ; i | U3-£1 IJ?D.JU./QU I/ ; NO 266
i b.mobile/.activity.account.Acc | SurfaceFlinger(481):id=4128 —_—
i ountDetailsTabActivity,force- —» Removed nobile (-2/9) gSystem Iog)
| crash] { 03-2115:35:30.748 D/
| 03-2115:35:26.719 I/ [| KnoxTimeoutHandler(1623): notify-
| wm_task_moved(1623): [8860,1,7] | ActivityDrawn [MsgParam] userid: 0 ¢
i

fullscreen is true showWhenlocked
is false isMutiwindowRecord is false
multiwindowstyle is 1

03-21 15:35:30.749 D/

——» KnoxTimeoutHandler(1623):
activityDrawn [MsgParam] userld: 0
fullscreen is true showWhenlocked
is false isMutiwindowRecord is false

03-21 15:35:26.722 1/
am_focused_activity(1623): [0,com
.schwab.mobile/.activity.account.Ac
countSummaryActivity,finishActivity
adjustFocus]

03-21 15:35:26.722 1/
am_pause_activity(1623): [0,108380

737,com.schwab.mobile/.activity.acc multiwindowstyle is 1
ount.AccountDetailsTabActivity] 03-21 15:35:30.749 |/

03-21 15:35:27.230 I/ ——» KnoxTimeoutHandler(1623): SD
am_restart_activity(1623): [0,194723 activityfalse
084,8860,com.schwab.mobile/.activi 03-21 15:35:30.749 1/

e

_KnoxTimeoutHandler(1623):

% Several Knox vulnerabilities have been acknowledged by Samsung, including those that essentially allow attackers
to commandeer Knox.

CVE-2017-10963 — MITM lets an attacker install any app into the Knox container (without the user’s
knowledge), enabling control/data leakage inside the container.

CVE-2019-6744 — Secure Folder lock-screen handling flaw enabled local access to Secure Folder contents.
CVE-2024-20856 — Improper Authentication lets physical attackers access Secure Folder without proper
authorization

EXHIBIT 'S' 17

pitlo
Text Box
No. 235

pitlo
Text Box
No. 264

pitlo
Text Box
No. 266
(System log)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
(System log)

L. A stub Webview package in the Schwab app provided a covert channel for surface

overlay attacks, intercept/inject inputs, and interfere with onscreen data rendering.
No. 6 (February 28)

System information

» (right) “System information” affirms that this crash _ L, crash

pertains to the Schwab mobile app. Exception class name

java.lang.NullPointerException

» (below) The “Application data” lists two ‘Effective

. . L . Source file
WebView package version’ entries, including a SourceFile

placeholder stub (VersionCode 100; VersionName

Source class

0.0.0.1). That configuration is not expected in a production | . com.schwab.mobile.f.d.e

build and indicates the app was compiled or reconfigured

Source method

to use a non-production WebView—which typically r

requires source-level modification and elevated device

Line number

rivileges.
p g 122

No. 8 (February 28)
Application data

Effective WebView package name

com.android.chrome % Several instances (not shown here) involving

WebView "privileged processes" and "sandbox
Effective WebView package pro_c_esses, includingn March 3: the WebView's
version "privileged_process2" dies and restarts at the s
VersionCode:292408752;VersionName: of a Schwab app crash sequence.
56.0.2524.87 (Screenshots Nos. 183-193)

com.google.android.webview
VersionCode:100VersionName:0.0.0.1

7

« Stub WebViews are dangerous because they’re placeholders that can be swapped or
redirected to an attacker-controlled provider, bypassing the hardened, trusted WebView
runtime. An attacker can then load hidden pages and run arbitrary JavaScript in the app’s
context—stealing cookies/tokens, abusing JavascriptInterface bridges, and manipulating

in-app data flows.

EXHIBIT 'S' 18

pitlo
Snapshot

pitlo
Text Box
No. 6 (February 28)

pitlo
Text Box
No. 8 (February 28)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Text Box
Several instances (not shown here) involving WebView "privileged processes" and "sandboxed processes," including on March 3: the WebView's "privileged_process2" dies and restarts at the start of a Schwab app crash sequence.
(Screenshots Nos. 183-193)

pitlo
Arrow

pitlo
Snapshot

M. A “Maintenance” of the TD’s app was observed running alongside the standard instance

No. 205 (March 21)
aOEIEGmMWE[wo = 4 8%015:32

while Schwab app crashes occurred including on March 21.

= ThinkorSwim Maintenance was active Running apps

performing background tasks three minutes | com.android.vending
after a warning for an Invalid JPEG that 4, com.devexperts.tdmobile.platform.a
ndroid.thinkorswim
processed. No. 237 com.samsung.android.messaging
0.
\ 03“2"11 5‘-2;5;"7\'53W/;\/|ms/w S com.sec.android.inputmethod
—> image(27783): Failed to read EXIF {

orientationjava.io.|OException: Gam:SEc antivjd.applaanchies

Invalid exif format : com.android.chrome:privileged_proc

—» com.android.mms.j.d: Invalid JPEG ess1 |
format :
03-21 15:29:39.703 E/Mms/ COm.ancIoic cirme
Telephonyptlls(27783): com.google.android.googlequicksear
nameForFileSystem.length() 49 chbox:search
zgmeForContentsLocatlon.Iength() com.sec.spp.pushi:RemoteDIcProces
3 .android.communicatio
NO. 229 com §amsung an
WNO. 24+ nservice
03-21 15:32:31.343 |/am_pss
(1623): [30609,10218,com.deve com.samsung.SMT

xperts.tdmobile.platform.andro
—— id.thinkorswim:maintenance,
7887872,1880064,5696512]

com.devexperts.tdmobile.platform.a
——® ndroid.thinkorswim:maintenance

Eventlog NO. 235 |
. ——»am_crash(1623):
= And three minutes later, the Schwab app [32507,0,com.schwab.mobile,
h 949501508 java.lang.NullPointerEx
crashed. ception,Attempt to invoke virtual

method 'java.util.List com.schwab.m
obile.common.a.x.a(int)' on a null

object reference,SourceFile,133]

03-21 15:35:26.718 I/
am_finish_activity(1623):
[0,108380737,8860,com.schwa
b.mobile/.activity.account.Acc
ountDetailsTabActivity,force-

crash]

+ The “maintenance” instance of TD Ameritrade may have been a malicious overlay
that could communicate with Schwab’sversion of the Schwab app that was tooled to
interface with the TD back-end system. The key was to the trick was the overlay of

surfaces on the device.

EXHIBIT 'S' 19

pitlo
Text Box
No. 205 (March 21)

pitlo
Text Box
No. 237

pitlo
Text Box
No. 229

pitlo
Text Box
No. 235

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

N. On May 23, coding errors cause the TD app to crash with Null Pointer Exceptions
involving “Phone Order Editor Activity”, “Order Editor Parameter Holders” and
“Order Entry Fragments.”

= This provides a unique glimpse into nature of the “coding errors”: the mechanics of
order data handling was altered—absolutely consistent with the issues described by June
2023 FINRA disciplinary action against Barclays, and necessary to facilitate a “rewiring”

of the account logic and data structures to interfere and interpose with the Schwab data.
No. 344 (May 23)

¥ =
I Stack trace l

| java.lang.RuntimeException: Unable to resume
activity {com.devexperts tdmobile platform
android.thinkorswim/com.devexperts.tdmob
) ile.editor.phone.PhoneOrderEditorActivity}, -
s java.lang.NullPointerException: Attempt to read =
from field "int diw.L’ on a null object reference
at
| android.app.ActivityThread. performResumeAct
ivity(ActivityThread.java:3790)
at
android.app.ActivityThread.handleResumeActiv
ity(ActivityThread.java:3830) B
at
android.app.ActivityThread$H.handleMessage(
ActivityThread.java:1746)
at
android.os.Handler.dispatchMessage(Handler.j
ava:105)
at android.os.Looper.loop(Looper.java:164)
at
android.app.ActivityThread.main(ActivityThrea
d.java:6940)
at java.lang.reflect. Method.invoke(Native
Method)
at
com.android.internal, os.Zygote$MethodAndAr
gsCaller.run(Zygote.java:327)
at
com.android.internal.os.Zygotelnit.main(Zygot
elnit.java:1374)
Caused by: java.lang.NullPointerException
Attempt to read from field 'int diw.L on a
null object reference
— at cuo.n(OrderEditorParamsHolder.java:
50132)
—p at cuo.c(OrderEditorParamsHolder.java:451)
——p at csq.S(AbstractEntryFragment.java:350)
—» at cun.S(GenericOrderEntryFragment.java

2010,

EXHIBIT 'S' 20

pitlo
Text Box
No. 344 (May 23)

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

O. JIT inline-cache deoptimization within Zygote provided a means to rewire application

logic and data structures.

= “Hot” call sites (i.e., frequently executed code paths) such as java.lang.Object and

Java.util. Map3Entry were deoptimized, which enabled malicious runtime manipulations.

% java.lang.Object is the root of the Java type hierarchy. Forcing deoptimization at
Object-related call sites opens a massive attack surface—attacker-controlled logic can
interpose at the most frequently exercised dispatch points and alter comparisons, lookups,
or other operations that affect app integrity.

% java.utiLMapS$Entry (i.e., Map.Entry): reads/writes and iteration of kev/value pairs — a
prime place to intercept lookups/returns of sensitive data (account balances, transaction
records).

No. 327

EXHIBIT 'S' 21

pitlo
Text Box
No. 327

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

P. Dynamic Heap Allocation (DHA) manipulation (“herding”) altered the runtime
environment to suppress logging, analytics, and crash reporting.

= Android’s Security Log Agent and other core system services were misclassified as
cached or empty (rendering them expendable even though they should never be classified
as such) and were terminated one minute before a TD app crash event on May 23.

(multiple crashes were observed that day, but only a very few visible signs appear in the

logs).

No. 366
R/ —_—
¢ Processes for both User 0 and the Knox UID Event log -
1 1 | 05-2307:55:39.955 |fam_kill
150 (Andr01d secure badge pr0V1der) were (1410) [0,29223,com cequint.ecid,

906,17 DHA:empty #33]

simultaneously targeted for elimination —)
! 0523 07:55:39.956 I/am_kill (1410): [0,

consistent with teardown of a system-level 29443 com.samsung.android.dgagent,
—» 906,17, DHA:empty #33]
exploit that violated Knox boundaries. 05-23 07:55:39.958 I/am_kill (1410)

{ [0,29274,com.samsung.android.se
—> curitylegagent,906,17,DHA:empty
#33)

% The killed processes are all tagged the same 1 p5.23 07:5539.958 |/am kil
. . . | (1410): [0,29009 com.wsomacp,
OOM _score_adj of 906 (immediately —4» 906,17 DHAempty #33]

05-23 07:55:39.958 |/fam_kill { 1410)
— 1 [150,28962,com.sec.andraid.pr

to be emptied - a tell-tale sign that the E.;';erhadg&goﬁ 7,DHAempty

reclaimable) and herded into DHA slot #33

allocator was biased.

= . By suppressing the crash response, the attacker’s could take advantage of the devices
weakened state (like a guard stepping away from the security booth, permitting intruders
to enter uncontested and turn off the security cameras). It is suspected that the app
crashes themselves were not intended to be noticeable: Just a little blip, and then the app
restarts as it’s brought back into focus. The crashes of the Schwab app particularly
tended to occur during this restart process. The Attackers may have even believed that
everything was executing properly, and for all intents and purposes, it was—from their
end, but the chaos on my device was very noticeable. Speculation regarding the root

cause of the exploits “imperfections” is beyond the scope of this declaration.

EXHIBIT 'S' 22

pitlo
Text Box
No. 366

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

pitlo
Arrow

Q. Error messages displayed frequently by the Schwab app are consistent with session
tampering and cross-context interference

. In addition to the crashes and other accounting discrepancies, the Schwab mobile app
repeatedly surfaced modal alerts indicative of session-state resets, user-identity context
changes, and data-availability faults, including the following:

= “Your session has either timed out or not been correctly established,”
= “Passcode disabled due to new User ID,”
» “This feature is temporarily unavailable...”
. While error messages are often the result of benign circumstances, the frequency of

these occurrences provides additional context that supports the conclusions drawn herein,

namely that these are artifacts from multiple users’ sessions clashing on the device..

Screenshot_20180302-0311 Screenshot 20180308-0132

Your session has either timed out or This feature is temporarily unavail-
has not been correctly established. able. Please try again later, or call us
Please sign on again. at 800-433-9196 for assistance.

CLOSE

6 &G e £ 4 11%0 01:46

Notice

Passcode disabled due to new User

ID
This feature is temporarily unavail-

able. Please try again later, or call us
at 800-435-4000 for assistance.

CLOSE

Screenshot 20180302-0146

No. 111

EXHIBIT 'S' 2:

pitlo
Text Box
Screenshot_20180302-014611

pitlo
Text Box
No. 111

pitlo
Text Box
Screenshot_20180308-013202

pitlo
Text Box
Screenshot_20180302-031144

R. Other issues with the Schwab app indicate that app logic and data structures were
“imperfectly” rewired by the exploit.

While the exploit succeeded in misrepresenting key account figures to conceal funds targeted

by theft, there were obvious signs of tampering:

1. Notifications regularly appeared upon sign-in, alerting that: “Historical Data is
missing from one of more of your accounts,” a clear indication that transaction
histories and balance data had been altered or lost.

Screenshot 20180323-144454 (and 6 other instanc

Some of your accounts are missing
historical data.

CLOSE

2. The overall account “Personal Value” and “Day Change” figures (Total Account
Value, gain/loss for the day) displayed as “$0.00” and “N/A”, respectively.
Screenshot_20180323-083910 Screenshot_20180227-113755
EIQEWQxokk = 4 6%008:39

& Transfer = Deposit
= Summary Q
Personal Value $29,517.77

Day Change

& Transfer = Deposit

Personal Value

Day Change Accounts Value, Day Change'-11
Individual $29,517.77
Data is currently unavailable, ...612 Brokerage +$29,517.77 (100.00%)
Total® $29,517.77
+$29,517.77 (100.00%)
Investment Value, Day Change]
'”j':"d“a' $66,488.16 *

-$13,768.61 (-20.11%)
...617 Schwab Futur...

* This account value does not contribute to the Personal
Value chart. For details, see "What is Personal Value?”

% This account does not contribute to the Personal Value chart” further suggests that
account balances had been “rewired.” particularly considering that, before the
Futures Account was opened, there was no such issue.

EXHIBIT 'S' 24

pitlo
Text Box
Screenshot_20180323-144454 (and 6 other instances)

pitlo
Text Box

Screenshot_20180323-083910

pitlo
Text Box

Screenshot_20180227-113755

3. Inconsistency regarding when the last reported transactions occurred supports the

other evidence of erroneous dates and manipulated timekeeping.
Screenshot 20180306-233638

bEMA@UMWo O 4 18% & 23:36

Individual ¥ Q :

GAIN/LOSS BALANCES HISTORY TILE VIEW

Open Filled Today's
Activity

0 4 0

All 9 Orders

History - No Transactions Today

Your last transaction was Today

AMTD 03/09/2018 57.00 P
Buy to Open -$3,213.16
Qty: 125 Price: $0.25

All History

Stay Connected™

There are no events available at this time.

EXHIBIT 'S' 25

pitlo
Text Box

Screenshot_20180306-233638

I declare under penalty of perjury that the foregoing is true and correct.

Executed on November 6, 2025,

Respectfully submitted,

/s/David Pitlor
David Pitlor, P.E.

Licensed Professional Mechanical Engineer
Nebraska Certificate No. E-17959

EXHIBIT 'S' 26

	Page 13

